4509 - Bridging Mathematics

Topology and Continuity

PAULO FAGANDINI

The **open ball** centered around $x_0 \in \mathbb{R}^n$ and radius r > 0 is defined as

$$B(x_0, r) = \{x \in \mathbb{R}^n | ||x - x_0|| < r\}$$

while the **closed ball** centered around x_0 and radius r > 0 is

$$\overline{B}(x_0, r) = \{x \in \mathbb{R}^n | ||x - x_0|| \le r\}$$

- Let $A \subset \mathbb{R}^n$. $x_0 \in A$ is **interior**, if there is $\epsilon > 0$ such that $B(x_0, \epsilon) \subseteq A$.
- Let $A \subseteq \mathbb{R}^n$, the **interior** of A, denoted as int(A), is the set of all its interior points, $int(A) = \{x \in A | \exists \epsilon > 0, B(x_0, \epsilon) \subseteq A\}$.
- The set $A \subseteq \mathbb{R}^n$ is **open** if $A \setminus int(A) = \emptyset$.
- The set A is **closed** if A^c is open.

- The **closure** of A, denoted as \overline{A} , is the smallest closed set that contains A.
- The **boundary** of A, denoted as ∂A , is defined as $\overline{A} \setminus int(A)$.

Definition

 $A \subset \mathbb{R}^n$ is **bounded** if there is an open ball that contains A.

Definition

A set $A \subseteq \mathbb{R}^n$ is said to be **compact** if it is closed and bounded.

A **sequence** is any function $f : \mathbb{N} \to \mathbb{R}$.

Definition

The sequence x_t converges to x_0 if, for any open ball B containing x_0 , exists $t_{\epsilon} \in \mathbb{N}$ such that for $t \geq t_{\epsilon}$, $x_t \in B$. It is denoted as $x_t \to x_0$. x_0 is called the **limit** of x_t .

Conjecture

If a sequence converges, then its limit is unique.

A **sequence** is any function $f : \mathbb{N} \to \mathbb{R}$.

Definition

The sequence x_t converges to x_0 if, for any open ball B containing x_0 , exists $t_{\epsilon} \in \mathbb{N}$ such that for $t \geq t_{\epsilon}$, $x_t \in B$. It is denoted as $x_t \to x_0$. x_0 is called the **limit** of x_t .

Conjecture

If a sequence converges, then its limit is unique.

You know what is coming, ...

A **sequence** is any function $f : \mathbb{N} \to \mathbb{R}$.

Definition

The sequence x_t converges to x_0 if, for any open ball B containing x_0 , exists $t_{\epsilon} \in \mathbb{N}$ such that for $t \geq t_{\epsilon}$, $x_t \in B$. It is denoted as $x_t \to x_0$. x_0 is called the **limit** of x_t .

Conjecture

If a sequence converges, then its limit is unique.

You know what is coming, Quiz! Think on a way to prove it... 10 min.

Assume it is not unique, so:

1. $x_t \rightarrow x_0$ and also $x_t \rightarrow x_1$, and $x_1 \neq x_0$.

Assume it is not unique, so:

- 1. $x_t \rightarrow x_0$ and also $x_t \rightarrow x_1$, and $x_1 \neq x_0$.
- 2. $\exists t_{\epsilon}^0, t_{\epsilon}^1 \in \mathbb{N}$ such that for $t_{\epsilon}^* > \max\{t_{\epsilon}^0, t_{\epsilon}^1\} \ x_t \in \mathcal{B}(t_0, \epsilon)$ and $x_t \in \mathcal{B}(t_1, \epsilon) \ \forall t > t^*$.

Assume it is not unique, so:

- 1. $x_t \rightarrow x_0$ and also $x_t \rightarrow x_1$, and $x_1 \neq x_0$.
- 2. $\exists t_{\epsilon}^0, t_{\epsilon}^1 \in \mathbb{N}$ such that for $t_{\epsilon}^* > \max\{t_{\epsilon}^0, t_{\epsilon}^1\} \ x_t \in B(t_0, \epsilon)$ and $x_t \in B(t_1, \epsilon) \ \forall t > t^*$.
- 3. Let $|x_0 x_1| = \delta$. Choose $\epsilon = \delta/2$. So there is t^* such that $|x_t x_0| < \delta/2$ and $|x_t x_1| < \delta/2$.

Assume it is not unique, so:

- 1. $x_t \rightarrow x_0$ and also $x_t \rightarrow x_1$, and $x_1 \neq x_0$.
- 2. $\exists t_{\epsilon}^0, t_{\epsilon}^1 \in \mathbb{N}$ such that for $t_{\epsilon}^* > \max\{t_{\epsilon}^0, t_{\epsilon}^1\} \ x_t \in B(t_0, \epsilon)$ and $x_t \in B(t_1, \epsilon) \ \forall t > t^*$.
- 3. Let $|x_0 x_1| = \delta$. Choose $\epsilon = \delta/2$. So there is t^* such that $|x_t x_0| < \delta/2$ and $|x_t x_1| < \delta/2$. $|x_0 x_1| = |x_0 x_t + x_t x_1| = |(x_0 x_t) + (-x_1 + x_t)| \le |x_0 x_t| + |x_1 x_t| < 2\epsilon = \delta$,

contradiction!

- The sequence x_t is **increasing** if for any $t \in \mathbb{N}$, $x_t \leq x_{t+1} \in \mathbb{R}$.
- If x_t is increasing, it is called **bounded from above** if $x_t \leq c, \forall t \in \mathbb{N}$.

Conjecture

If the sequence x_t is increasing and bounded from above, then it converges.

Let x_t be a sequence. A **subsequence** of x_t is a sequence built by removing some of the elements of x_t without changing its order. Let $\phi: \mathbb{N} \to \mathbb{N}$ be increasing, then $y_t = x_{\phi(t)}$ is a subsequence of x_t .

Definition

Given a sequence x_t , x^* is a **cluster point** of x_t , if there is a subsequence of x_t that converges to x^* .

Conjecture

A bounded sequence converges if and only if it has only one cluster point.

Let $x_1^*, x_2^*, ..., x_p^*$ be cluster points of x_t .

Definition

- The **limit superior** (a.k.a. greatest limit, maximum limit, upper limit, lim sup, \overline{lim}) of x_t is defined as $\max\{x_1^*, x_2^*, ..., x_p^*\}$.
- The **limit inferior** (a.k.a. least limit, minimum limit, lower limit, lim inf, \underline{lim}) of x_t is defined as $\min\{x_1^*, x_2^*, ..., x_p^*\}$.

Conjecture

Let $A \subseteq \mathbb{R}^n$.

- A is closed if and only if any convergent sequence $x_t \subseteq A$ has its limit in A. If $x_t \subseteq A, x_t \to x_0 \Leftrightarrow x_0 \in A$.
- A is compact if and only if for any sequence $x_t \subseteq A$, there is a convergent subsequence.
- $\blacksquare \overline{A} = \{x^* | \exists x_t \in A, x_t \to x^*\}$

Let $A, C \subseteq \mathbb{R}^n$ such that $C \subseteq A$. We'll say that C is **dense** in A if and only if $\overline{C} = A$.

Consider $f: \mathbb{R}^m \to \mathbb{R}^n$. f(x) converges to $\alpha \in \mathbb{R}^n$ when $x \in \mathbb{R}^m$ goes to $x_0 \in \mathbb{R}^m$, if for any sequence $x_n \to x_0$, $f(x_n) \to \alpha$. This is written as $\lim_{x \to x_0} f(x) = \alpha$.

Definition

 $f: \mathbb{R}^m \to \mathbb{R}^m$ is **continuous** in $x_0 \in \mathbb{R}^m$ if, for any sequence $x_t \to x_0$ it holds that $f(x_t) \to f(x_0)$

Definition

If $f: \mathbb{R}^m \to \mathbb{R}^n$ is continuous for all $x_0 \in A \subseteq \mathbb{R}^m$, then it is continuous in A.

A more conventional definition of continuity is:

Definition

A function is said to be **continuous** on the set $S \subseteq \mathbb{R}^n$ if for every $a \in S$, and any $\epsilon > 0$ there exists δ such that for any $x \in S$ that satisfies $|x - a| \le \delta$ implies $|f(x) - f(a)| \le \epsilon$.

Conjecture

The sum, product, division or composition of continuous functions is continuous.

Conjecture

Let $A \subseteq \mathbb{R}^m$, and given $\mathcal{F} = \{f : A \to \mathbb{R}^m, f \text{ continuous in } A\}$, it holds that \mathcal{F} is a vector space.

Conjecture

Let $K \subseteq \mathbb{R}^n$ be compact and $f : \mathbb{R}^n \to \mathbb{R}^m$ a continuous function. Then f(K) is compact.

Take a sequence $y_n \in f(K)$ that converges to some y (not necessarily in f(K)). Then, by definition $\exists x_n \in K$ such that $f(x_n) = y_n$. Because K is compact, there is a subsequence of x_n , say x_{n_j} that converges to some $x_0 \in K$. Now, by continuity of f, we have that $y = f(x_0) \in f(K)$ and f(K) is closed.

Let's check if it is bounded. Assume it is not, and let z_n be a sequence in f(K) such that $z_n \geq n$ for $n \in \mathbb{N}$. Again, repeating the argument we can get that there is some subsequence s_{n_j} in K, such that $f(s_{n_j}) = z_n$, and that converges to some $\hat{s} \in K$, because K is compact. However:

$$\infty = \lim_{n \to \infty} z_n \le \lim_{j \to \infty} f(s_{n_j}) = f(\hat{s})$$

by the continuity of f, which is a contradiction (we found an upper bound for infinity!).

Let $K \subseteq \mathbb{R}^n$ and $f : K \to \mathbb{R}$. The **maximum** (x_M) and the **minimum** (x_m) of f are defined as:

- $f(x_M) \ge f(x) \quad \forall x \in K$
- $f(x_m) \le f(x) \quad \forall x \in K$

These are also known as global maximum and global minimum

Conjecture

Let $f: K \to \mathbb{R}$ be continuous and K compact, then x_M and x_m exist.

A set A is said to be connected if, for any $a,b\in A$, there is a continuous function $\phi:[0,1]\to A$, such that $\phi(0)=a$ and $\phi(1)=b$.

Theorem (Bolzano)

Let $f : \mathbb{R} \to \mathbb{R}$ continuous. Let $a, b \in \mathbb{R}$ such that f(a) < 0 and f(b) > 0, then there is $c \in \mathbb{R}$ such that f(c) = 0.

Theorem (Weierstrass)

Let $[a,b] \subseteq \mathbb{R}$, let $f:[a,b] \to \mathbb{R}$ continuous. Then for any $u \in (a,b)$, there is at least one c such that f(c) = u.

Bolzano's.

We start with interval $I_0 = (a_0 = a, b_0 = b)$. Define $d = \frac{b+a}{2}$. There are only three possibilities:

- 1. f(d) = 0 and therefore the proof is complete, and c = d.
- 2. f(d) < 0, and we define interval $I_1 = (a_1 = d, b_1 = b_0)$
- 3. f(d) > 0, and we define interval $I_1 = (a_1 = a_0, b_1 = d)$

Note that $I_1 \subset I_0$, with half the length. Repeat and build a sequence of open intervals, where $I_n \subset I_{n+1}$ with $f(a_n) < 0 < f(b_n)$. Define $c_{2n} = a_n$ and $c_{2n+1} = b_n$, you have that the sequence c_i converges by the Cauchy criterion, as for m > n we have $|c_m - c_n| \le 2^{-n/2} |I_0|$. Then $c_n \to c \in [a,b]$, and given that a_n and b_n are subsequences, they converge to the same limit.

Given f continuous, $x_n \to x \Rightarrow f(x_n) \to f(x)$. We set a such that $f(a_n) \le 0$, but $\lim_{n \to \infty} f(a_n) = f(c) \le 0$, and the same can be said for b_n , $\lim_{n \to \infty} f(b_n) = f(c) \ge 0$, but if $f(c) \le 0$ and $f(c) \ge 0$ then it must be that f(c) = 0.

Brouwer fixed point theorem in \mathbb{R}

Theorem

Let $f: K \to K$ continuous, with $K \subseteq \mathbb{R}$ compact and convex.¹ Then there is \overline{x} such that $f(\overline{x}) = \overline{x}$.

Brouwer fixed point theorem in \mathbb{R}

Theorem

Let $f: K \to K$ continuous, with $K \subseteq \mathbb{R}$ compact and convex.¹ Then there is \overline{x} such that $f(\overline{x}) = \overline{x}$.

Proof.

- Let $f:[0,1] \rightarrow [0,1]$ continuous.
- $\blacksquare \text{ Let } g(x) = f(x) x.$
- g(0) = f(0) 0 = f(0), but $f(0) \ge 0$, so $g(0) \ge 0$
- g(1) = f(1) 1, but $f(1) \le 1$, so $f(1) 1 \le 0$, or $g(1) \le 0$.
- Then, because of the proposition we just saw, there must be \overline{x} such that $g(\overline{x}) = 0$, or $f(\overline{x}) = \overline{x}$.

Theorem (Brower fixed point in \mathbb{R}^n)

Consider $B_n \subseteq \mathbb{R}^n$ the unit open ball (an open ball of radius 1). Let $f: B_n \to B_n$ continuous. Then f has a fixed point in B_n , that is, there is $x^* \in B_n$ such that $f(x^*) = x^*$.

 $f: \mathbb{R}^n \to \mathbb{R}^n$ is called **locally Lipschitz continuous** if for any $x_0 \in \mathbb{R}^n$, there is a neighborhood V_{x_0} and a constant L > 0 such that for any $x, y \in V_{x_0}$ it holds that

$$||f(x) - f(y)|| \le L||x - y||$$

L is called the **Lipschitz constant**.

If L does not depend on x_0 , it is called simply a **Lipschitz continuous**, and furthermore, if L < 1 it is called a **contraction**.

Theorem (Banach fixed point)

If $f: \mathbb{R}^n \to \mathbb{R}^n$ is a contraction, then there is a single $x^* \in \mathbb{R}^n$ such that $f(x^*) = x^*$.

